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The problem is considered of best approximation of finite number of functions
simultaneously. For a very general class of norms, characterization results are
derived. The main part of the paper is concerned with proving uniqueness and
strong uniqueness theorems. For a particular subclass, which includes the impor-
tant special case of the Chebyshev norm, a characterization is given of a uniqueness
element. � 1997 Academic Press

1. INTRODUCTION

Let X be a compact Hausdorff space and Y a normed linear space with
norm & }&Y . Let C(X, Y ) denote the set of all continuous functions from X
to Y, and let & }&A be a norm on C(X, Y ). Let U be defined by

U=[a # Rl, &a&B�1],

where & }&B is a given norm on Rl. Define a norm on l-tuples of elements
of C(X, Y ) as follows: for any F=(,1 , ..., ,l) # C(X, Y ) l define

&F&=max
a # U " :

l

i=1

ai ,i "A
, (1.1)

where a=(a1 , ..., al).
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Now suppose that functions ,1 , ..., ,l in C(X, Y ) are given. Then the
problem is considered here of approximating these functions simultaneously
by functions in S, a subspace of C(X, Y ), in the sense of the minimization
of the norm (1.1). In other words, we want to find an l-tuple f =(,, ..., ,),
where , # S, to minimize

&F& f &. (1.2)

If such a function f * exists, it is called a best simultaneous approximation to
F=(,1 , ..., ,l). Problems of simultaneous approximation can be viewed as
special cases of vector-valued approximation, and some recent work in this
area is due to Pinkus [6], who points out that many questions remain
unresolved. He is concerned with the question of when a finite dimensional
subspace is a unicity space, for some different norms from those considered
here. We are also primarily interested in uniqueness questions. Characteriza-
tion results for linear problems were recently given in [9] based on the
derivation of an expression for the directional derivative, and these
generalized earlier work of [8]. We being by showing how these results can
be obtained in a simpler and more direct manner, which permits their exten-
sion to some nonlinear problems. The rest of the paper is concerned with
uniqueness and strong uniqueness of best approximations.

In what follows, finite sequences of identical elements identified by
(,, ..., ,) will be assumed to be l-tuples.

2. CHARACTERIZATION OF BEST APPROXIMATIONS

Let C*(X, Y ) denote the dual space of C(X, Y ), and let W denote the
dual unit ball. For F=(,1 , ..., ,l) # C(X, Y ) l define

gF (a, w)= :
l

i=1

ai(w, ,i) , for all (a, w) # U_W,

where the inner product notation links elements of C(X, Y ) and its dual.
Note that U_W is endowed with the product topology, while W is
endowed with the weak * topology. Since for any (a0, w0) # U_W,

| gF (a, w)& gF (a0, w0)|= } :
l

i=1

ai(w, ,i) & :
l

i=1

a0
i (w0, ,i) }

� :
l

i=1

|ai&a0
i | |(w, ,i) |+ :

l

i=1

|a0
i | |(w&w0, ,i) |,
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it follows that gF ( } , } ) # C(U_W ) (the space of continuous functions
defined on U_W ). Note that for any , # S, f =(,, ..., ,),

gf (a, w)=\ :
l

i=1

ai+ (w, ,) # C(U_W ).

Further for any such f,

&F& f &=max
a # U " :

l

i=1

ai (,i&,)"A

=max
a # U

max
w # W } :

l

i=1

ai(w, ,i&,) }
=&gF ( } , } )& gf ( } , } )&C ,

where & }&C denotes the uniform norm on C(U_W ). Now define

Sg=[gf : f =(,, ..., ,), , # S].

It follows that f *=(,*, ..., ,*), ,* # S is a best simultaneous approximation
to F=(,1 , ..., ,l) if and only if gf * # Sg is a best approximation to gF in the
uniform norm of C(U_W ). Let PS(F ) denote the set of all best
simultaneous approximations f =(,, ..., ,), where , # S, to F. In addition,
let

d(F, S)=inf [&F& f & : f =(,, ..., ,), , # S],

d(F, C)=d(F, C(X, Y )).

Definition 1. A set S is a sunset for simultaneous approximation if for
any F=(,1 , ..., ,l), and f *=(,*, ..., ,*), ,* # S, f * # PS(F ) implies that
f * # PS(F:) for F:= f *+:(F& f *), and :�0.

Descriptions of sunsets (or strict suns), and solar properties, are given in
[3]. Linear sets are examples of suns, as are convex sets, but also some non-
convex sets, for example rational functions.

Theorem 1. Let S/C(X, Y ) be a sunset of simultaneous approximation.
Then f * # PS(F ) if and only if for any f =(,, ..., ,), , # S, there exists
a # ext(U ), w # ext(W ) such that

gF& f *(a, w)=&F& f *&,

gf *& f (a, w)�0,

where ``ext'' denotes the set of extreme points.
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Proof. If S is a sunset for simultaneous approximation, then Sg is a strict
sun for uniform approximation in C(U_W ). The result then follows from
the generalized Kolmogorov criterion characterizing a best approximation
in C(U_W ) with the uniform norm (see, for example [3, Theorem I.2.4]),
using the Krein�Milman Theorem. K

A special case of (1.1) is given by

&,&A=max
t # X

&,(t)&Y , (2.1)

for any , # C(X, Y ). This includes the important case of the Chebyshev
norm on l-tuples. Let F=(,1 , ..., ,l) # C(X, Y ) l. Then a Chebyshev norm
may be defined by

&F&= max
1�i�l

max
t # X

&,i (t)&Y , (2.2)

which is the special case of (1.1) when & }&A is given by (2.1) and & }&B is the
l1 norm [see 8, 9]. Define

H(F, f )={t # X : max
&a&B=1 " :

l

i=1

ai (,i (t)&,(t))"Y
=&F& f &= . (2.3)

Let Z denote the unit ball in Y*, the dual space of Y, and let ( } , } ) Y denote
the inner product linking Y and Y*. Then using the form of points in
ext(W ) in this case, we have the following corollary of Theorem 1.

Corollary 1. Let & }&A be given by (2.1), and let S/C(X, Y ) be a sun-
set for simultaneous approximation. Then f * # PS(F ) if and only if for any
f =(,, ..., ,), , # S, there exists a # ext(U ), t # H(F, f ), v(t) # ext(Z) such that

:
l

i=1

ai(v(t), ,i (t)&,*(t)) Y =&F& f *&,

\ :
l

i=1

ai+ (v(t), ,*(t)&,(t)) Y�0.

Returning to the general problem, standard linear theory (for example
[7]) gives the following result.

Theorem 2. Let S be an n-dimensional subspace of C(X, Y ). Then
f * # PS(F ) if and only if there exists a j # ext(U ), w j # ext(W ), :j>0,
j=1, ..., r with �r

j=1 :j=1 and 1�r�n+1 such that
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gF& f *(a j, w j)=&F& f *&, j=1, ..., r,

:
r

j=1

:j gf (a j, w j)=0 for all f # S.

This is just the result given as Theorem 1 in [9].

3. UNIQUENESS OF BEST APPROXIMATIONS

For the general case uniqueness is a consequence of strict convexity of the
norm & }&A . This is established next. It is convenient to extract the following
result as a preliminary lemma.

Lemma 1. Let S/C(X, Y ), and let F=(,1 , ..., ,l) # C(X, Y ) l. Let
f *=(,*, ..., ,*) # PS(F ), with a* # U such that

&F& f *&=" :
l

i=1

ai*(,i&,*)"A
. (3.1)

Then if d(F, C)<d(F, S), �l
i=1 ai*{0.

Proof. Assume that d(F, C)<d(F, S) and also that a* satisfying (3.1) is
such that �l

i=1a*i=0. Then there exists , # C(X, Y ) such that

max
a # U " :

l

i=1

ai (,i&,)"A
<" :

l

i=1

ai*(,i&,*)"A

=" :
l

i=1

ai*(,i&,)"A
.

This is a contradiction which proves the result. K

Theorem 3. Let & }&A be strictly convex, and let S/C(X, Y ) be a sunset
for simultaneous approximation. Then for any F=(,1 , ..., ,l), d(F, C)=
d(F, S) or PS(F ) contains at most one element.

Proof. Let F=(,1 , ..., ,l) be such that d(F, C)<d(F, S). Suppose that
f *=(,*, ..., ,*) # PS(F ), f� =(,� , ..., ,� ) # PS(F ) with ,*{,� . Let ,0

i =2,i &,� ,
i=1, ..., l, F 0=(,0

1 , ..., ,0
l ). Then it follows from the definition of a sunset

that f� # PS(F 0). Also
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&F 0& f *&=&2F& f� & f *&

�&F& f� &+&F& f *&

=2 &F& f� &

=&F 0& f� &. (3.2)

Therefore f * # PS(F 0).
Further

&2F& f� & f *&=max
a # U " :

l

i=1

ai (2,i&,� &,*)"A

�max
a # U _" :

l

i=1

ai (,i&,� )"A
+" :

l

i=1

ai (,i&,*)"A&
�&F 0& f� &, using (3.2). (3.3)

Thus equality holds to (3.3). Let a # U be chosen so that

" :
l

i=1

(2,i&,� &,*)"A
=&2F& f� & f *&=2d(F, C).

Thus

" :
l

i=1

ai (,i&,� )+ :
l

i=1

ai (,i&,*)"A

=" :
l

i=1

ai (,i&,� )"A
+" :

l

i=1

ai (,i&,*)"A
,

which, using the assumption of strict convexity, implies that

:
l

i=1

ai (,i&,� )= :
l

i=1

ai (,i&,*)

or

\ :
l

i=1

ai+ (,*&,� )=0. (3.4)

Since by assumption d(F, C)<d(F, S), it follows from Lemma 1 that
(�l

i=1 ai){0, and so ,*=,� and the result is established. K

For the special case covered by (2.1), it is possible to give a precise
characterization of a uniqueness element, which is defined as follows.
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Definition 2. Let S be a sunset of C(X, Y ), and f *=(,*, ..., ,*), with
,* # S. Then ,* is called a uniqueness element of S if for any
F=(,1 , ..., ,l) # C(X, Y ) l with d(F, C)<d(F, S), f * # PS(F ), then f * is a
unique best approximation to F from S.

Theorem 4. Let Y be strictly convex, let & }&A be given by (2.1), and let
S be a sunset for simultaneous approximation. Let f *=(,*, ..., ,*) # Sl. Then
,* is a uniqueness element of S if and only if for any F=
(,1 , ..., ,l) # C(X, Y ) l, with f * # PS(F ) and d(F, C)<d(F, S), ,* is uniquely
determined by the set of values in H(F, f *) (that is, if , # S and ,(t)=,*(t)
for all t # H(F, f *), then ,=,*).

Proof. Let ,* be a uniqueness element of S. Suppose that for some
F=(,1 , ..., ,l) # C(X, Y ) l, with f * # PS(F ) and d(F, C)<d(F, S), there
exists f� =(,� , ..., ,� ), ,� # S, ,� {,*, such that

,� (t)=,*(t), for all t # H(F, f *).

Define for all t # X

,0
i (t)=,*(t)+_&,*&,� &A& max

&a&B=1 \ :
l

j=1

aj+ &,*(t)&,� (t)&Y&
_

,i (t)&,*(t)
&F& f *&

, (3.5)

and let

F 0=(,0
1 , ..., ,0

l ).

It is easy to verify directly that

&F 0& f *&�&,*&,� &A . (3.6)

Since for any t # H(F, f *),

max
&a&B=1 " :

l

i=1

ai (,0
i (t)&,*(t))"Y

=&,*&,� &A ,

then

&F 0& f *&�&,*&,� &A . (3.7)

It follows from (3.6) and (3.7) that

&F 0& f *&=&,*&,� &A . (3.8)
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From Theorem 1, because f * # PS(F ), for any , # S, there exists a # ext(U ),
w # ext(W ), such that

�w, :
l

i=1

ai (,i&,*)�=&F& f *&,

(3.9)

\ :
l

i=1

ai+ (w, ,*&,)�0,

and so using Corollary 1, for some t # H(F, f *), v(t) # ext(Z),

:
l

i=1

ai(v(t), ,i (t)&,*(t)) Y=&F& f *&.

From (3.5),

:
l

i=1

ai(v(t), ,0
i (t)&,*(t))Y =&,*&,� &A

=&F 0& f *&, using (3.8).

Thus t # H(F 0, f *), and we must have

�w, :
l

i=1

ai (,0
i &,*)�=&F 0& f *&. (3.10)

Equations (3.9) and (3.10) show, using Theorem 1, that f * # PS(F 0).

Now for any t # X,

max
&a&B=1 " :

l

i=1

ai (,0
i (t)&,� (t))"Y

� max
&a&B=1 "\ :

l

i=1

ai+ (,*(t)&,� (t))"Y

+ max
&a&B=1 "_&,*&,� &A& max

&a&B=1 "\ :
l

i=1

ai+ (,*(t)&,� (t))"Y &
_

1
&F& f *&

:
l

i=1

ai (,i (t)&,*(t))"Y

�&,*&,� &A .
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Thus

&F 0& f� &�&F 0& f *&, using (3.8),

so that f� # PS(F 0), a contradiction. This proves necessity.
Now suppose that for some F=(,1 , ..., ,l) # C(X, Y ) l with

d(F, C)<d(F, S) and f * # PS(F ), f =(,*, ..., ,*), there exists another
f� # PS(F ), f� =(,� , ..., ,� ). Let

,0
i =2,i&,� , i=1, ..., l,

and let

F 0=(,0
1 , ..., ,0

l ).

It follows from the definition of a sunset that f� # PS(F 0). Now

&F 0& f *&= max
&a&B=1 " :

l

i=1

ai (2,i&,� &,*)"A

� max
&a&B=1 " :

l

i=1

ai (,i&,� )"A
+ max

&a&B=1 " :
l

i=1

ai (,i&,*)"A

=2 &F& f� &

=&F 0& f� &.

Thus f * # PS(F 0). Now let a # ext(U ), w # ext(W ) such that

�w, :
l

i=1

ai (2,i&,� &,*)�=&F 0& f *&,

which is possible using Theorem 1. Thus for any t # H(F 0, f *),

&F 0& f *&=" :
l

i=1

ai (2,i&,� &,*)(t)"Y

�" :
l

i=1

ai (,i&,� )(t)"Y
+" :

l

i=1

ai (,i&,*)(t)"Y

�&F& f� &+&F& f *&

=&F 0& f *&.
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It follows that

" :
l

i=1

ai (,i&,� )(t)+ :
l

i=1

ai (,i&,*)(t)"Y

=" :
l

i=1

ai (,i&,� )(t)"Y
+" :

l

i=1

ai (,i&,*)(t)"Y
.

Therefore using the strict convexity of Y,

:
l

i=1

ai (,i&,� )(t)= :
l

i=1

ai (,i&,*)(t),

or equivalently

\ :
l

i=1

ai+ (,*(t)&,� (t))=0, for all t # H(F 0, f *).

Since d(F, C)<d(F, S), by Lemma 1 we must have �l
i=1 ai {0, and so

,*(t)=,� (t) for all t # H(F 0, f *).

This proves the sufficiency of the stated conditions. K

4. STRONG UNIQUENESS

It is possible to establish strong uniqueness for the general problem under
a condition which generalizes the Chebyshev set condition for linear best
approximation in the uniform norm. The result hinges on the derivation of
the analogue of the strong Kolomogorov condition for finite dimensional
spaces (see, for example, Wulbert [10] or Nurnberger [5]).

Definition 3 [1]. An n-dimensional subspace S of C(X, Y ) is called an
interpolating subspace if no nontrivial linear combination of n linearly inde-
pendent extreme points of W annihilates S.

Theorem 5. Let S be an interpolating subspace of C(X, Y ), and let
d(F, C)<d(F, S). Then f *=(,*, ..., ,*) # PS(F ) is a strongly unique best
simultaneous approximation to F, that is, there exists #>0 such that

&F& f &�&F& f *&+# &,&,*&A for all f =(,, ..., ,), , # S.
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Proof. We can use Theorem 2. Since f * # PS(F ), it follows that there
exist a j # ext(U ), w j # ext(W ), :j>0, j=1, ..., r with �r

j=1 :j=1, and
1�r�n+1 such that

:
l

i=1

a j
i (w j, ,i&,*) =&F& f *&, j=1, ..., r, (4.1)

:
r

j=1

:j \ :
l

i=1

a j
i + (w j, ,*&,) =0 for all , # S. (4.2)

With no loss of generality, we can assume that the set [w j, j=1, ..., r] is
linearly independent. Because d(F, C)<d(F, S), it follows from Lemma 1
that ;j=:j (�l

i=1 a j
i ){0, j=1, ..., n. Assume that r<n+1. Then we can

take an element ,0 # S such that ,0 {,*, and (w j, ,*&,0)=;j , j=1, ..., r,
using the fact that S is an interpolating subspace. This means that

:
r

j=1

;j(w j, ,*&,0)= :
r

j=1

;2
j >0,

which is a contradiction. It follows that r=n+1. Now for any , # S, any
(a j, w j) # ext U_ext W satisfying (4.1) and (4.2) assume that we have

\ :
l

i=1

a j
i + (w j, ,*&,)�0, j=1, ..., r.

Then it follows from (4.2) that

0= :
r

j=1

;j(w j, ,*&,)�0,

which in turn implies that

(w j, ,*&,)=0, j=1, ..., r,

or ,*=,, since r=n+1. Thus there exists (a, w) # ext U_ext W with

:
l

i=1

ai(w, ,i&,*)=&F& f *&,

\ :
l

i=1

ai+ (w, ,*&,)>0.
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Now define

M(F, f *)={(a, w) # ext(U )_ext(W ) : :
l

i=1

ai(w, ,i&,*)=&F& f *&= .

Then we have

max
(a, w) # M(F, f *) \ :

l

i=1

ai+ (w, ,*&,)>0, for all f # S.

Let

#= inf
, # S"[,*]

max
(a, w) # M(F, f *) {\ :

l

i=1

ai+�w,
,*&,

& f *& f &�= .

Then #>0, since S is finite dimensional. Further for any , # S,

:
l

i=1

ai(w, ,i&,)= :
l

i=1

ai(w, ,i&,*) +\ :
l

i=1

ai+ (w, ,*&,).

For any (a, w) # M(F, f *), it follows that

&F& f &&&F& f *&� max
(a, w) # M(F, f *) \ :

l

i=1

ai+ (w, ,*&,)

�# &,*&,&A .

This implies that

&F& f &�&F& f *&+# &,&,*&A for all f # S,

and the proof is complete. K

Definition 4. For any normed linear space [E, & }&], the modulus of
convexity is defined by

$E (=)=inf [1& 1
2 &x+ y& : x, y # E, &x& y&==, &x&=&y&=1],

for 0<=�2.

Definition 5 [2, 4, 11]. E is said to be uniformly convex if $E (=)>0 for
any 0<=�2. A uniformly convex space E is p-uniformly convex (or has
modulus of convexity of power type p) if for some c>0, $E (=)�c= p.
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Examples of uniformly convex spaces are Hilbert spaces and the Lp

spaces, 1<p<�. In fact, Lp spaces are 2-uniformly convex if 1<p�2, and
p-uniformly convex if p>2.

Remark. Let

dp=inf {
1
2&x& p+ 1

2&y& p&&1
2 (x+ y)& p

&x& y& p , x, y # E, &x& y&>0= . (4.3)

Then it follows from [2] or [11] that dp>0 if and only if E is p-uniformly
convex.

Theorem 6. Let C(X, Y ) be p-uniformly convex, let S be a convex subset
of C(X, Y ), and let F=(,1 , ..., ,l) # C(X, Y ) l, with d(F, C)<d(F, S). Then
f *=(,*, ..., ,*) # PC(F ) is a strongly unique best simultaneous approxima-
tion of order p to F, that is, there exists #p>0 such that

&F& f & p�& F& f *& p+#p&,&,*& p
A , for all f =(,, ..., ,), , # S.

Proof. Let the stated conditions hold, and let

#p( f )=
&F& f & p&&F& f *& p

&,&,*& p
A

.

Then it is sufficient to prove that

inf [#p( f ) : f =(,, ..., ,), , # S, ,{,*]>0.

Without loss of generality, suppose that C(X, Y ) is complete. Suppose also
that there exists a sequence [ fn], with fn=(�n , ..., �n), �n # S, �n {,* such
that

#p( fn) � 0, as n � �. (4.4)

We will show that this leads to a contradiction. Now

#p( fn)=
&F& fn& p&&F& f *& p

&�n&,*& p
A

�_ | & fn& f *&&&F& f *& |
&�n&,*&A &

p

&_ &F& f *&
&�n&,*&A&

p

�_max
a # U

:
l

i=1

ai&
&F& f *&

&�n&,*&A&
p

&_ &F& f *&
&�n&,*&A&

p

.
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Thus if [�n] is unbounded, it follows that

&�n&,*&A � �, as n � �.

This in turn implies that

lim
n � �

#p( fn)�max
a # U

:
l

i=1

ai>0,

which contradicts (4.4). Thus [�n] is bounded, and so

&F& fn& � &F& f *&, as n � �,

by definition of #p( f ). Thus there exists f� =(,� , ..., ,� ), ,� # clo(S), where clo(S)
denotes the closure of S, and a subsequence of [ fn] (which we do not
rename) such that �n � ,� weakly. Note that C(X, Y ) is reflexive by the
assumption of p-uniform convexity [4].

Now let a=(a1 , ..., al) # U, w # W such that

:
l

i=1

ai(w, ,i&,*)=&F& f *&,

:
l

i=1

ai(w, ,*&,)�0, for all , # S, (4.5)

using Theorem 1. Since d(F, C)<d(F, S), by Lemma 1 �l
i=1 ai {0. Then

lim
n � � " :

l

i=1

ai (,i&�n)+ :
l

i=1

ai (,i&,*)"A

� lim
n � � �w, :

l

i=1

ai (,i&�n)+ :
l

i=1

ai (,i&,*)�
= lim

n � � �w, :
l

i=1

ai (,i&�n)�+&F& f *&

=�w, :
l

i=1

ai (,i&,� )�+&F& f *&,

��w, :
l

i=1

ai (,i&,*)�+&F& f *&, using (4.5),

=2 &F& f *&.
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Also

lim
n � � " :

l

i=1

ai (,i&�n)"A
� lim

n � �
&F& fn&=&F& f *&,

and

" :
l

i=1

ai (,i&,*)"A
=&F& f *&,

and so

" :
l

i=1

ai (,i&,n)& :
l

i=1

ai (,i&,*)"A
� 0, as n � �,

using the p-uniform convexity property of C(X, Y ). Since �l
i=1 ai {0, it

follows that

& fn& f *& � 0, as n � �.

Now let the sequence [an=(an
1 , ..., an

l )] # U be such that

" :
l

i=1

an
i (,i&

1
2 (�n+,*))"A

=&F& 1
2 ( fn+ f *)&. (4.6)

Then

&F& 1
2 ( fn+ f *)&� 1

2 " :
l

i=1

an
i (,i&�n)"A

+ 1
2 " :

l

i=1

an
i (,i&,*)"A

� 1
2 &F& fn&+ 1

2 &F& f *&.

Also

lim
n � �

&F& 1
2( fn+ f *)&= 1

2 lim
n � �

(&F& fn &+&F& f *&)=&F& f *&.

Thus

lim
n � � " :

l

i=1

an
i (,i&�n)"A

=&F& f *&. (4.7)

Since �l
i=1 an

i =0 implies that 1
2 ( fn+ f *) # PC(F ), then

d(F, S)�&F& 1
2( fn+ f *)&=d(F, C),
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which contradicts the assumption that d(F, C)<d(F, S). Thus �l
i=1 an

i {0
for any n�1. Let

*=inf
n } :

l

i=1

an
i }. (4.8)

Assume *=0. Then, going to a subsequence if necessary, we must have
an

i � a0
i , i=1, ..., l with �l

i=1 a0
i =0. Since & fn& f *& � 0,

" :
l

i=1

a0
i (,i&,*)"A

= lim
n � � " :

l

i=1

an
i (,i&�n)"A

=&F& f *&,

using (4.7). This implies that d(F, C)=d(F, S), which is a contradiction.
Thus *>0. Now for any n�1,

&F& f *& p�&F& 1
2( fn+ f *)& p

="1
2 _ :

l

i=1

an
i (,i&�n)+ :

l

i=1

an
i (,i&,*)&"

p

A
, by (4.6),

� 1
2 " :

l

i=1

an
i (,i&�n)"A

+ 1
2 " :

l

i=1

an
i (,i&,*)"

p

A

&dp " :
l

i=1

an
i (�n&,*)"

p

A

� 1
2 &F& fn& p+ 1

2 &F& f *& p&* p dp &�n&,*& p
A ,

using the above remark and (4.8). Hence

&F& f *& p�&F& fn&2&2* p dp &�n&,*& p
A ,

and

#p( fn)�2* p dp>0.

This is a contradiction and the theorem is proved. K

It is easy to give examples of spaces which satisfy the conditions of this
Theorem. For example, let Y be a p-uniformly convex Banach space, and let
X be a measure space. Then C(X, Y ) is p-uniformly convex with the norm

&,&A={|X
&,(t)& p

Y=
1�p

, 1�p<�.
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